Novel psoralen derivatives as anti-breast cancer agents and their light-activated cytotoxicity against HER2 positive breast cancer cells

Author:

Aekrungrueangkit Chiphada,Wangngae Sirilak,Kamkaew Anyanee,Ardkhean Ruchuta,Thongnest Sanit,Boonsombat Jutatip,Ruchirawat Somsak,Khotavivattana Tanatorn

Abstract

AbstractPsoralen derivatives are well known for their unique phototoxicity and also exhibits promising anti-breast cancer activity both in the presence and the absence of UVA irradiation. However, the structure–activity relationship on this scaffold remains lacking. Herein, a series of psoralen derivatives with various C-5 substituents were synthesized and evaluated for their in vitro dark and light-activated cytotoxicity against three breast cancer cell lines: MDA-MB-231, T47-D, and SK-BR-3. The type of substituents dramatically impacted the activity, with the 4-bromobenzyl amide derivative (3c) exhibiting the highest dark cytotoxicity against T47-D (IC50 = 10.14 µM), with the activity comparable to those of the reference drugs (doxorubicin, 1.46 µM; tamoxifen citrate, 20.86 µM; lapatinib 9.78 µM). On the other hand, the furanylamide 3g exhibits the highest phototoxicity against SK-BR-3 cells with the IC50 of 2.71 µM, which is almost tenfold increase compared to the parent compound, methoxsalen. Moreover, these derivatives showed exceptional selectivity towards HER2+ (SK-BR-3) over the HER2− (MDA-MB-231) breast cancer cell lines, which correlates well with the results from the molecular docking study, revealing that 3g formed favorable interactions within the active site of the HER2. Additionally, the cell morphology of SK-BR-3 cells suggested that the significant phototoxicity was related to induction of cell apoptosis. Most of the synthesized psoralen derivatives possess acceptable physicochemical properties and are suitable for being further developed as a novel anti-breast cancer agent in the future.

Funder

the Graduate School, Chulalongkorn University

Suranaree University of Technology

Asahi Glass Foundation

Center of Excellence on Environmental Health and Toxicology, OPS, Ministry of Higher Education, Science, Research and Innovation

the Thailand Science Research and Innovation (TSRI), Chulabhorn Research Institute

Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3