Physical aspects of electro osmotically interactive Cilia propulsion on symmetric plus asymmetric conduit flow of couple stress fluid with thermal radiation and heat transfer

Author:

Akbar Noreen Sher,Muhammad Taseer

Abstract

AbstractA novel mathematical analysis is established that summits the key features of Cilia propulsion for a non-Newtonian Couple Stress fluid with the electroosmosis and heat transfer. In such physiological models, the conduit may have a symmetric or asymmetric configuration in accordance with the biological problem. Being mindful of this fact, we have disclosed an integrated analysis on symmetric in addition to asymmetric conduits that incorporates major physiological applications. The creeping flow inference is reviewed to model this realistic problem and exact solutions are computed for both the conduit cases. Graphical illustrations are unveiled to highlight the physical aspects of cilia propulsion on symmetric in addition to asymmetric conduit and an inclusive comparison study is conveyed. The flow profile attains higher values for an asymmetric conduit in relation to the symmetric. Likewise, the pressure rise and pressure gradient also score high for asymmetric conduit in relation to the symmetric conduit. A visual representation of flow inside symmetric as well as asymmetric conduit is provided by streamline graphs and temperature profile as well.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3