The effect of circulating iron on barrier integrity of primary human endothelial cells

Author:

Madsen M. C.,Podieh F.,Overboom M. C.,Thijs A.,den Heijer M.,Hordijk P. L.

Abstract

AbstractIron is hypothesized to be one of the contributors to cardiovascular disease and its levels in the circulation may correlate with cardiovascular risk. The aim of this study is to investigate the mechanisms that underlie the effects of iron on the barrier function of primary human endothelium. We used Human Umbilical Vein Endothelial Cells (HUVEC) to investigate the effects of Fe3+ using electric cell-substrate impedance sensing, microscopy, western blot and immunofluorescence microscopy. Exposure to Fe3+ caused EC elongation and upregulation of stress-induced proteins. Analysis of barrier function showed a dose-dependent drop in endothelial integrity, which was accompanied by Reactive Oxygen Species (ROS) production and could partly be prevented by ROS scavengers. Inhibition of contractility by the ROCK inhibitor Y27632, showed even more effective rescue of barrier integrity. Using western blot, we detected an increase in expression of the small GTPase RhoB, an inducer of EC contraction, and a small decrease in VE-cadherin, suggestive for an iron-induced stress response. Co-stimulation by TNFα and iron, used to investigate the role of low-grade inflammation, revealed an additive, negative effect on barrier integrity, concomitant with an upregulation of pro-inflammatory markers ICAM-1 and RhoB. Iron induces a response in HUVEC that leads to endothelial activation and a pro-inflammatory state measured by loss of barrier integrity which can be reversed by ROS scavengers, combined with inhibition of contractility. These data suggest that ROS-mediated damage of the vascular endothelium could contribute to the increased cardiovascular risk which is associated with elevated levels of circulating iron.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3