From superhydrophilicity to superhydrophobicity: high-resolution neutron imaging and modeling of water imbibition through porous surfaces treated with engineered nano-coatings

Author:

Zemajtis Filip,Hasan Abul Borkot Md Rafiqul,Yetik Okan,Trtik Pavel,Pillai Krishna M.,Sobolev KonstantinORCID

Abstract

AbstractThis paper reports on a superhydrophilic to superhydrophobic transformation of TiO2 nanoparticles doped zinc phosphate coating systems when a hydrophobic agent is applied. The objective of the reported research was to demonstrate the feasibility of a neutron imaging technique for evaluating the performance of the proposed nano-coating system and reveal the differences in water ingress mechanisms which are specific to plain, superhydrophilic, overhydrophobic, and superhydrophobic specimens. The engineered nano-coatings were designed to improve hydrophobic response with inducing the required roughness pattern and introducing the photocatalytic performance. The effectiveness of the coatings was assessed using high-resolution neutron imaging (HR-NI), SEM, CLSM, and XRD techniques. High-resolution neutron imaging revealed that the superhydrophobic coating effectively prevents water ingress into the porous ceramic substrate, whereas water imbibition was observed for superhydrophilic coating during the test duration. The moisture transport kinetics was modeled based on the Richards equation for plain ceramic and superhydrophilic specimens using obtained penetration depth values from HR-NI. SEM, CLSM, and XRD studies confirm the desired TiO2-doped zinc phosphate coatings with increased surface roughness, photocatalytic reactivity, and chemical bonding. The research results demonstrated that a two-layer superhydrophobic system is capable of creating effective water barriers on the surface with contact angles of 153°, which remained effective even after surface damage.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3