Expression signature of ten small nuclear RNAs serves as novel biomarker for prognosis prediction of acute myeloid leukemia

Author:

Zhang Zhongming,Huang Rui,Lai Yongrong

Abstract

AbstractThis study aimed to screen for small nuclear RNAs (snRNAs) associated with the prognosis of acute myeloid leukemia (AML) by using The Cancer Genome Atlas (TCGA) whole-transcriptome sequencing dataset. A total of 130 AML patients from TCGA cohort with complete prognostic information and transcriptome data were enrolled in the current study. Comprehensive survival and functional enrichment analyses were performed to explore the prognostic value and potential biological functions of prognostic snRNAs in AML patients. In the current study, we screened 72 snRNAs that were notably associated with the clinical outcome of AML and developed an expression signature consist of ten snRNAs, that can be accurately applied to assess the overall survival of AML patients. Functional mechanism analysis revealed that this expression signature may be strongly linked to some classical tumor-associated pathways, such as Notch and Wnt pathways, as well as being closely related to B and T cell receptor pathways. Furthermore, we screened six compounds (chicago sky blue 6 B, 5230742, clorsulon, nefopam, nicardipine, and streptomycin) that may serve as targeted therapeutic drugs for AML using connectivity maps. Tumor immunoassays indicated significant differences in the immune microenvironment of the bone marrow tissue between high-risk and low-risk AML patients. Immune infiltration analysis also revealed significant differences in the abundance of multiple immune cells in the bone marrow of the two groups of AML patients groups. In conclusion, our results revealed a novel prognostic expression signature of AML consisting of ten snRNAs, and we conducted a preliminary exploration of its potential biological functions and tumor immunity.

Funder

the Self‑Raised Scientific Research Fund of the Health and Family Planning Commission of the Guangxi Zhuang Autonomous Region

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3