Improvement of the glycoproteomic toolbox with the discovery of a unique C-terminal cleavage specificity of flavastacin for N-glycosylated asparagine

Author:

Pralow Alexander,Hoffmann Marcus,Nguyen-Khuong Terry,Rapp Erdmann,Reichl Udo

Abstract

AbstractTo determine all potential N-glycosylation sites of a glycoprotein, one central aspect of every bottom-up N-glycoproteomic strategy is to generate suitable N-glycopeptides that can be detected and analyzed by mass spectrometry. Specific proteases, such as trypsin, bear the potential of generating N-glycopeptides that either carry more than one N-glycosylation site or are too long to be readily analyzed by mass spectrometry– both due to the lack of tryptic cleavage sites near the N-glycosylation site. Here, we present a newly identified cleavage specificity of flavastacin, a protease from Flavobacterium menigosepticum, which - up to now - was only reported to cleave peptide bonds N-terminal to aspartic acid residues. In contrast to literature, we could not confirm this N-terminal specificity of flavastacin for aspartic acid. However, for the first time, we show a unique cleavage specificity of flavastacin towards the C-terminus of N-glycosylated asparagine residues. Implemented in an N-glycoproteomic workflow the use of flavastacin can thus not only render data analysis much easier, it can also significantly increase the confidence of MS-based N-glycoproteomic analyses. We demonstrate this newly discovered specificity of flavastacin by in-depth LC-MS(/MS) analysis of complex-type glycosylated human lactotransferrin and bovine serum albumin peptides and N-glycopeptides that were generated by trypsin and flavastacin digestion. Following to this work, further elucidation of the efficiency, specificity and mode of action of flavastacin is needed, but we believe that our discovery has great potential to facilitate and improve the characterization of N-glycoproteomes.

Publisher

Springer Science and Business Media LLC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3