Target site as the main mechanism of resistance to imazamox in a Euphorbia heterophylla biotype

Author:

Rojano-Delgado Antonia M.,Portugal João M.,Palma-Bautista Candelario,Alcántara-de la Cruz RicardoORCID,Torra JoelORCID,Alcántara Esteban,De Prado RafaelORCID

Abstract

Abstract Euphorbia heterophylla is a weed species that invades extensive crop areas in subtropical regions of Brazil. This species was previously controlled by imazamox, but the continuous use of this herbicide has selected for resistant biotypes. Two biotypes of E. heterophylla from southern Brazil, one resistant (R) and one susceptible (S) to imazamox, were compared. The resistance of the R biotype was confirmed by dose-response assays since it required 1250.2 g ai ha−1 to reduce the fresh weight by 50% versus 7.4 g ai ha−1 for the S biotype. The acetolactate synthase (ALS) enzyme activity was studied using ALS-inhibiting herbicides from five different chemical families. The R biotype required the highest concentrations to reduce this enzyme activity by 50%. A Ser653Asn mutation was found in the ALS gene of the R biotype. The experiments carried out showed that imazamox absorption and metabolism were not involved in resistance. However, greater 14C-imazamox root exudation was found in the R biotype (~70% of the total absorbed imazamox). Target site mutation in the ALS gene is the principal mechanism that explains the imazamox resistance of the R biotype, but root exudation seems to also contribute to the resistance of this biotype.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3