Quasiperiodic disorder induced critical phases in a periodically driven dimerized p-wave Kitaev chain

Author:

Roy Koustav,Roy Shilpi,Basu Saurabh

Abstract

AbstractThe intricate relationship between topology and disorder in non-equilibrium quantum systems presents a captivating avenue for exploring localization phenomenon. Here, we look for a suitable platform that enables an in-depth investigation of the topic. To this end, we delve into the nuanced analysis of the topological and localization characteristics exhibited by a one-dimensional dimerized Kitaev chain under periodic driving and perform detailed analyses of the Floquet Majorana modes. Such a non-equilibrium scenario is made further interesting by including a spatially varying quasiperiodic potential with a temporally modulated amplitude. Apriori, the motivation is to explore an interplay between dimerization and a quasiperiodic disorder in a topological setting which is also known to demonstrate unique (re-entrant) localization properties. While the topological properties of the driven system confirm the presence of zero and $$\pi $$ π Majorana modes, the phase diagram obtained by constructing a pair of topological invariants ($$\mathbb {Z} \times \mathbb {Z} $$ Z × Z ), also referred to as the real space winding numbers, at different driving frequencies reveal intriguing features that are distinct from the static scenario. In particular, at either low or intermediate frequency regimes, the phase diagram concerning the zero mode involves two distinct phase transitions, one from a topologically trivial to a non-trivial phase, and another from a topological phase to an Anderson localized phase. On the other hand, the study of the Majorana $$\pi $$ π mode unveils the emergence of a unique topological phase, characterized by complete localization of both the bulk and the edge modes, which may be called as the Floquet topological Anderson phase. Moreover, different frequency regimes showcase distinct localization features which can be examined via the localization toolbox, namely, the inverse and the normalized participation ratios. Specifically, the low and high-frequency regimes demonstrate the existence of completely extended and localized phases, respectively. While at intermediate frequencies, we observe the critical (multifractal) phase of the model which is further investigated via a finite-size scaling analysis of the fractal dimension. Finally, to add depth into our study, we have performed a mean level spacing analyses and computed the Hausdorff dimension which yields specific characteristics inherent to the critical phase, offering profound insights into its underlying properties.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3