Clustering by antigen-presenting genes reveals immune landscapes and predicts response to checkpoint immunotherapy

Author:

Gong Xutong,Karchin Rachel

Abstract

AbstractImmune checkpoint blockade (ICB) has demonstrated efficacy by reinvigorating immune cytotoxicity against tumors. However, the mechanisms underlying how ICB induces responses in a subset of patients remain unclear. Using bulk and single-cell transcriptomic cohorts of melanoma patients receiving ICB, we proposed a clustering model based on the expression of an antigen-presenting machinery (APM) signature consisting of 23 genes in a forward-selection manner. We characterized four APM clusters associated with distinct immune characteristics, cancer hallmarks, and patient prognosis in melanoma. The model predicts differential regulation of APM genes during ICB, which shaped ICB responsiveness. Surprisingly, while immunogenically hot tumors with high baseline APM expression prior to treatment are correlated with a better response to ICB than cold tumors with low APM expression, a subset of hot tumors with the highest pre-ICB APM expression fail to upregulate APM expression during treatment. In addition, they undergo immunoediting and display infiltration of exhausted T cells. In comparison, tumors associated with the best patient prognosis demonstrate significant APM upregulation and immune infiltration following ICB. They also show infiltration of tissue-resident memory T cells, shaping prolonged antitumor immunity. Using only pre-treatment transcriptomic data, our model predicts the dynamic APM-mediated tumor-immune interactions in response to ICB and provides insights into the immune escape mechanisms in hot tumors that compromise the ICB efficacy. We highlight the prognostic value of APM expression in predicting immune response in chronic diseases.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3