Radar sensor based machine learning approach for precise vehicle position estimation

Author:

Sohail Muhammad,Khan Abd Ullah,Sandhu Moid,Shoukat Ijaz Ali,Jafri Mohsin,Shin Hyundong

Abstract

AbstractEstimating vehicles’ position precisely is essential in Vehicular Adhoc Networks (VANETs) for their safe, autonomous, and reliable operation. The conventional approaches used for vehicles’ position estimation, like Global Positioning System (GPS) and Global Navigation Satellite System (GNSS), pose significant data delays and data transmission errors, which render them ineffective in achieving precision in vehicles’ position estimation, especially under dynamic environments. Moreover, the existing radar-based approaches proposed for position estimation utilize the static values of range and azimuth, which make them inefficient in highly dynamic environments. In this paper, we propose a radar-based relative vehicle positioning estimation method. In the proposed method, the dynamic range and azimuth of a Frequency Modulated Continuous Wave radar is utilized to precisely estimate a vehicle’s position. In the position estimation process, the speed of the vehicle equipped with the radar sensor, called the reference vehicle, is considered such that a change in the vehicle’s speed changes the range and azimuth of the radar sensor. For relative position estimation, the distance and relative speed between the reference vehicle and a nearby vehicle are used. To this end, only those vehicles are considered that have a higher possibility of coming in contact with the reference vehicle. The data recorded by the radar sensor is subsequently utilized to calculate the precision and intersection Over Union (IOU) values. You Only Look Once (YOLO) version 4 is utilized to calculate precision and IOU values from the data captured using the radar sensor. The performance is evaluated under various real-time traffic scenarios in a MATLAB-based simulator. Results show that our proposed method achieves 80.0% precision in position estimation and obtains an IOU value up to 87.14%, thereby outperforming the state-of-the-art.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3