Personalized prediction of delayed graft function for recipients of deceased donor kidney transplants with machine learning

Author:

Kawakita SatoruORCID,Beaumont Jennifer L.,Jucaud VadimORCID,Everly Matthew J.

Abstract

AbstractMachine learning (ML) has shown its potential to improve patient care over the last decade. In organ transplantation, delayed graft function (DGF) remains a major concern in deceased donor kidney transplantation (DDKT). To this end, we harnessed ML to build personalized prognostic models to predict DGF. Registry data were obtained on adult DDKT recipients for model development (n = 55,044) and validation (n = 6176). Incidence rates of DGF were 25.1% and 26.3% for the development and validation sets, respectively. Twenty-six predictors were identified via recursive feature elimination with random forest. Five widely-used ML algorithms—logistic regression (LR), elastic net, random forest, artificial neural network (ANN), and extreme gradient boosting (XGB) were trained and compared with a baseline LR model fitted with previously identified risk factors. The new ML models, particularly ANN with the area under the receiver operating characteristic curve (ROC-AUC) of 0.732 and XGB with ROC-AUC of 0.735, exhibited superior performance to the baseline model (ROC-AUC = 0.705). This study demonstrates the use of ML as a viable strategy to enable personalized risk quantification for medical applications. If successfully implemented, our models may aid in both risk quantification for DGF prevention clinical trials and personalized clinical decision making.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3