Effects of different nitrogen applications and straw return depth on straw microbial and carbon and nitrogen cycles in paddy fields in the cool zone

Author:

Liu Lin,Cheng Ming,Jin Jingyi,Fu Minjie

Abstract

AbstractStraw is an important source of organic fertilizer for soil enrichment, however, the effects of different nitrogen(N) application rates and depths on straw decomposition microorganisms and carbon and nitrogen cycling under full straw return conditions in cool regions of Northeast China are not clear at this stage. In this paper, we applied macro-genome sequencing technology to investigate the effects of different N application rates (110 kg hm−2, 120 kg hm−2, 130 kg hm−2, 140 kg hm−2, 150 kg hm−2) and depths (0–15 cm, 15–30 cm) on straw decomposing microorganisms and N cycling in paddy fields in the cool zone of Northeast China. The results showed that (1) about 150 functional genes are involved in the carbon cycle process of degradation during the degradation of returned straw, of which the largest number of functional genes are involved in the methane production pathway, about 42, the highest abundance of functional genes involved in the citric acid cycle pathway. There are 22 kinds of functional genes involved in the nitrogen cycle degradation process, among which there are more kinds involved in nitrogen fixation, with 4 kinds. (2) High nitrogen application (150 kg hm−2) inhibited the carbon and nitrogen conversion processes, and the abundance of straw-degrading microorganisms and nitrogen-cycling functional genes was relatively high at a nitrogen application rate of 130 kg hm−2. (3) Depth-dependent heterogeneity of the microbial community was reduced throughout the vertical space. At 71 days of straw return, the nitrogen cycling function decreased and some carbon functional genes showed an increasing trend with the increase of straw return depth. The nitrogen cycle function decreased with the increase of straw returning depth. The microbial community structure was best and the abundance of functional genes involved in the nitrogen cycling process was higher under the conditions of 0–15 cm of returning depth and 130 kg hm−2 of nitrogen application.

Funder

China Jilin Province Agricultural Science and Technology Innovation Project Postgraduate Fund

China National Key R&D Program Subproject

Natural Science Foundation of Jilin Province, China

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3