A metagenomic assessment of bacterial community in spices sold open-air markets in Saint-Louis, Senegal

Author:

Sané Sarbanding,Diouara Abou Abdallah Malick,Coundoul Seynabou,Tene Sophie Déli,Kane Alé,Wade Serigne Fallou,Tamba Abdoulaye,Diop Mamadou,Mbaye Mame Ndew,Thiam Fatou,Dieng Modou,Mbengue Malick,Nguer Cheikh Momar,Sarr Aminata Diassé,Ndao Ababacar Sadikh,Touré Kane Coumba

Abstract

AbstractNatural spices play an essential role in human nutrition and well-being. However, their processing on different scales can expose them to potential sources of contamination. This study aimed to describe the bacterial community genomic footprint in spices sold in Senegal. Spice samples were collected in August 2022 in Saint-Louis, Senegal. The genomic region coding bacterial 16S rRNA was then amplified and sequenced using Oxford Nanopore Technology (ONT). Sequencing was carried out on two batches of samples, one containing part of the “Local Spices or Herbs” (n = 10), and the other, a mixture of 7 spices, Curcuma, Thyme and the other part of the “Local Spices or Herbs” (n = 39). Results showed high bacterial diversity and the predominance of Escherichia coli and Salmonella enterica in samples, with total reads of 65,744 and 165,325 for the two batches, respectively. The sample category “Homemade mixture of food condiments “, which includes all “Local Spices or Herbs” samples, showed remarkable bacterial diversity. These were followed by Curcuma, a blend of 7 spices and thyme. Also, the different categories of spices studied show similarities in their bacterial composition. These results highlight the microbial community’s highly diverse genomic profile, including pathogenic bacteria, in spice samples.

Funder

This research was funded by the Ministry of Higher Education, Research and Innovation (MESRI) of Senegal govment through his FIRST (Fonds d'Impulsion de la Recherche Scientifique et Technique) program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3