Research on the ratio of similar materials in water-absorbent mudstone based on fuzzy mathematics

Author:

Zeng Chunlin,Zhou Yuejin,Xiaoding Xu

Abstract

AbstractTo determine the suitability and credibility of similar water-absorbent mudstone materials in model experiments, the prototype mudstone parameter similarity index was determined based on the similarity theory. Similar materials use cement and Plaster as binders and quartz sand as aggregate. The sensitivity of similar indicators of similar materials to control factors was analyzed through range statistics. Multiple regression analysis was used to establish the quantitative relationship between each control factor and similar indicators. Finally, the optimal matching scheme was refined through the combination of fuzzy mathematics and analytic hierarchy process. The results show that the physical and mechanical property indicators of similar materials with different proportions have a wide distribution range, and under certain similar conditions, they can meet the requirements of rock model tests with different properties. The aggregate-binder ratio is a direct indicator of material density, elastic modulus, and compressive strength. The main controlling factors, material density, elastic modulus, and compressive strength all increase with the decrease in aggregate-binder ratio. The cement-plaster ratio is the main control factor of material water absorption, and the water absorption gradually decreases with the increase of the cement-plaster ratio. The formula obtained through linear analysis can better represent the changing trend and distribution characteristics of various parameters of similar materials with the aggregate-binder ratio and cement-plaster ratio, and initially optimize the proportioning scheme of similar materials. Use fuzzy mathematics to evaluate the membership degree of each parameter index of similar materials, and the optimal ratio scheme was further determined to improve the credibility of later model experiments.

Funder

the National Key R&D Program of China

the National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3