A nonlinear viscoelastic constitutive model with damage and experimental validation for composite solid propellant

Author:

Li Hui,Xu Jin-sheng,Chen Xiong,Zhang Jun-fa,Li Juan

Abstract

AbstractThe development of a nonlinear viscoelastic constitutive model of composite solid propellant (CSP) coupled with effects of strain rate and confining pressure is essential to assess the reliability of solid propellant grains during ignition operation process. In the present work, a nonlinear viscoelastic constitutive model with novel energy-based damage initiation criterion and evolution model was firstly proposed to describe the coupled effects of confining pressure and strain rate on mechanical responses of CSP. In the developed damage initiation criterion and evolution model, the linear viscoelastic strain energy density was introduced as the damage driving force, and the coupled effects of strain rate, damage history and confining pressure on damage growth were taken into account. Then, uniaxial tensile tests from low strain rates to medium strain rates and various confining pressures, and stress relaxation tests were conducted using a self-made active confining pressure device. Finally, the identification procedures of model parameters and validation results of the constitutive model were presented. Moreover, the master curve of damage initiation parameter was constructed through the time-pressure superposition principle (TPSP). The results show that the developed nonlinear constitutive model is capable of predicting the stress–strain responses of CSP under different strain rates and confining pressures.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3