Simultaneous bright- and dark-field X-ray microscopy at X-ray free electron lasers

Author:

Dresselhaus-Marais Leora E.,Kozioziemski Bernard,Holstad Theodor S.,Ræder Trygve Magnus,Seaberg Matthew,Nam Daewoong,Kim Sangsoo,Breckling Sean,Choi Sungwook,Chollet Matthieu,Cook Philip K.,Folsom Eric,Galtier Eric,Gonzalez Arnulfo,Gorkhover Tais,Guillet Serge,Haldrup Kristoffer,Howard Marylesa,Katagiri Kento,Kim Seonghan,Kim Sunam,Kim Sungwon,Kim Hyunjung,Knudsen Erik Bergbäck,Kuschel Stephan,Lee Hae Ja,Lin Chuanlong,McWilliams R. Stewart,Nagler Bob,Nielsen Martin Meedom,Ozaki Norimasa,Pal Dayeeta,Pablo Pedro Ricardo,Saunders Alison M.,Schoofs Frank,Sekine Toshimori,Simons Hugh,van Driel Tim,Wang Bihan,Yang Wenge,Yildirim Can,Poulsen Henning Friis,Eggert Jon H.

Abstract

AbstractThe structures, strain fields, and defect distributions in solid materials underlie the mechanical and physical properties across numerous applications. Many modern microstructural microscopy tools characterize crystal grains, domains and defects required to map lattice distortions or deformation, but are limited to studies of the (near) surface. Generally speaking, such tools cannot probe the structural dynamics in a way that is representative of bulk behavior. Synchrotron X-ray diffraction based imaging has long mapped the deeply embedded structural elements, and with enhanced resolution, dark field X-ray microscopy (DFXM) can now map those features with the requisite nm-resolution. However, these techniques still suffer from the required integration times due to limitations from the source and optics. This work extends DFXM to X-ray free electron lasers, showing how the $$10^{12}$$ 10 12 photons per pulse available at these sources offer structural characterization down to 100 fs resolution (orders of magnitude faster than current synchrotron images). We introduce the XFEL DFXM setup with simultaneous bright field microscopy to probe density changes within the same volume. This work presents a comprehensive guide to the multi-modal ultrafast high-resolution X-ray microscope that we constructed and tested at two XFELs, and shows initial data demonstrating two timing strategies to study associated reversible or irreversible lattice dynamics.

Funder

Lawrence Livermore National Laboratory,United States

Lawrence Fellowship

Laboratory Directed Research and Development,United States

Villum Fonden

Marie Skłodowska-Curie Fellowship

National Research Foundation of Korea

Mission Support and Test Services, LLC

Site-Directed Research and Development Program

Fusion Energy Sciences

EPSRC

ERC

European Research Council

Danish Agency for Science and Higher Education

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3