Three-dimensional reconstruction of laryngeal cancer with whole organ serial immunohistochemical sections

Author:

Tian Jun,Qian Bo,Zhang Sanmei,Guo Rui,Zhang Hui,Jeannon J.-P.,Jin Rongxiu,Feng Xiang,Zhan Yangni,Liu Jie,He Pengfei,Guo Jue,Li Le,Jia Yue,Huang Fuhui,Wang Binquan

Abstract

Abstract Three-dimensional (3D) image reconstruction of tumors based on serial histological sectioning is one of the most powerful methods for accurate high-resolution visualization of tumor structures. However, 3D histological reconstruction of whole tumor has not yet been achieved. We established a high-resolution 3D model of molecular marked whole laryngeal cancer by optimizing the currently available techniques. A series of 5,388 HE stained or immunohistochemically stained whole light microscopic images (200 ×) were acquired (15.61 TB).The data set of block-face images (96.2 GB) was also captured. Direct volume rendering of serial 6.25 × light microscopy images did not demonstrate the major characteristics of the laryngeal cancer as expected. Based on fusion of two datasets, the accurate boundary of laryngeal tumor bulk was visualized in an anatomically realistic context. In the regions of interest, micro tumor structure, budding, cell proliferation and tumor lymph vessels were well represented in 3D after segmentation, which highlighted the advantages of 3D reconstruction of light microscopy images. In conclusion, generating 3D digital histopathological images of a whole solid tumor based on current technology is feasible. However, data mining strategy should be developed for complete utilization of the large amount of data generated.

Funder

The Key Research and Development Program Funding of Shanxi Province

Shanxi Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiple cryoprobe placement strategy for a single freeze cryosurgery planning;Case Studies in Thermal Engineering;2022-06

2. The New Era of Three-Dimensional Histoarchitecture of the Human Endometrium;Journal of Personalized Medicine;2021-07-25

3. Collective metastasis: coordinating the multicellular voyage;Clinical & Experimental Metastasis;2021-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3