Use of network pharmacology and molecular docking to explore the mechanism of action of curcuma in the treatment of osteosarcoma

Author:

Hu Minhua,Yan Hongsong,Li Haishan,Feng Yuanlan,Sun Weipeng,Ren Yueyi,Ma Luyao,Zeng Wenxing,Huang Feng,Jiang Ziwei,Dong Hang

Abstract

AbstractCurcuma has been used as an adjuvant treatment for osteosarcoma (OS) due to its anticancer compounds. However, the underlying mechanism remains unclear. Therefore, this study aimed to explore the mechanism of action of curcuma in the treatment of OS using network pharmacology and molecular docking. In this study, anticancer compounds were obtained from relevant literature, and curcuma-related targets and OS treatment targets were obtained from public databases. Protein‒protein interaction networks were constructed to screen out the hub genes using the STRING database and Cytoscape software. Cluster analysis of the protein modules was then performed using the Cytoscape MCODE plugin. Furthermore, Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed for common targets among curcuma targets and OS-related targets using the DAVID database. Finally, molecular docking was performed, and the results were verified by Auto dock Tool and PyMOL software. Our research identified 11 potential active compounds, 141 potential therapeutic targets and 14 hub genes for curcuma. AKT1, TNF, STAT3, EGFR, and HSP90AA1 were the key targets closely related to the PI3K/Akt signaling pathways, HIF-1 signaling pathways, ErbB signaling pathways, and FOXO signaling pathways, which are involved in angiogenesis, cancer cell proliferation, metastasis, invasion, and chemotherapy resistance in the microenvironment of OS. Molecular docking suggested that the core compound had a strong affinity for key targets, with a binding energy of less than – 5 kJ/mol. The study showed that curcuma-mediated treatment of OS was a complex process involving multiple compounds, targets, and pathways. This study will enhance the understanding of how curcuma affects the proliferation and invasion of OS cells and reveal the potential molecular mechanism underlying the effect of curcuma on OS lung metastasis and chemotherapy resistance.

Funder

National studio construction projects for the experts in traditional Chinese medicine

National Natural Science Foundation of China

Special Fund for Discipline Reserve Talent Cultivation Project of Guangzhou University of Chinese Medicine "Double First-Class" and High-level University Construction

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3