Preparation and characterization of novel flame-retardant paint of substituted cyclodiphosph(V)azane sulfonomide and their Cu(II), Cd(II) metal complexes as new additives for exterior wood coating protection

Author:

El khashab Narmeen G.,Albohy Salwa A. H.,El-Wahab H. Abd,Fouda Moustafa M. G.,Sharaby Carmen M.

Abstract

AbstractThe development of flame-retardant materials has become an important research direction. For the past dozen years, researchers have been exploring flame retardants with high flame-retardant efficiency, low toxicity, less smoke, or other excellent performance flame retardants. Therefore, this work aimed to synthesize new cyclodiphosph(V)azane derivatives and their Cu(II) and Cd(II) metal complexes and investigated their potential applications as high flame-retardant efficiency. Various techniques were used to characterize the prepared ligand H2L and its metal complexes, including elemental analyses, mass spectra, conductivity measurements, electronic spectral data UV–vis, FT-IR, 1H,13C-NMR, TGA, XRD, and molecular docking experiments studies were M. tuberculosis receptors (PDB ID: 5UHF) and the crystal structure of human topoisomerase II alpha (PDB ID: 4FM9). Wood-based paint was physically mixed with the ligand H2L and its metal complexes. The obtained results of mechanical characteristics of the dried paint layers were noticed to improve, such as gloss value, which ranged from 85 to 95, hardness 1.5–2.5 kg, adhesion 4B to 5B, and impact resistance, which improved from 1.3 to 2.5 J. Moreover, the obtained results of flame-retardant properties showed a significant retardant impact compared to the blank sample, such as ignitability, which includes the heat flux which increased from 10 to 25 kW/m2, and ignition time, ranging from 550 to 1200 s, respectively, and limiting oxygen index (LOI) (%) which has been increased from 21 to 130 compared with the plywood sample and sample blank. The ordering activity of the observed results was noticed that coated sample based on Cd(II) metal complexes > coated sample based on Cu(II) metal complexes of Cyclophosphazene ligand > coated sample based on phosphazene ligand H2L > coated sample without additives > uncoated sample. This efficiency may be attributed to (1) the H2L is an organophosphorus compound, which contains P, N, Cl, and aromatic six- and five-member ring, (2) Cu(II) and Cd(II) metal complexes characterized by high thermal stability, good stability, excellent performance flame retardants, and wide application.

Funder

Al-Azhar University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3