A gene expression-based classifier for HER2-low breast cancer

Author:

Di Cosimo Serena,Pizzamiglio Sara,Ciniselli Chiara Maura,Duroni Valeria,Cappelletti Vera,De Cecco Loris,De Marco Cinzia,Silvestri Marco,De Santis Maria Carmen,Vingiani Andrea,Paolini Biagio,Orlandi Rosaria,Iorio Marilena Valeria,Pruneri Giancarlo,Verderio Paolo

Abstract

AbstractIn clinical trials evaluating antibody-conjugated drugs (ADCs), HER2-low breast cancer is defined through protein immunohistochemistry scoring (IHC) 1+ or 2+ without gene amplification. However, in daily practice, the accuracy of IHC is compromised by inter-observer variability. Herein, we aimed to identify HER2-low breast cancer primary tumors by leveraging gene expression profiling. A discovery approach was applied to gene expression profile of institutional INT1 (n = 125) and INT2 (n = 84) datasets. We identified differentially expressed genes (DEGs) in each specific HER2 IHC category 0, 1+, 2+ and 3+. Principal Component Analysis was used to generate a HER2-low signature whose performance was evaluated in the independent INT3 (n = 95), and in the publicly available TCGA and GSE81538 datasets. The association between the HER2-low signature and HER2 IHC categories was evaluated by Kruskal–Wallis test with post hoc pair-wise comparisons. The HER2-low signature discriminatory capability was assessed by estimating the area under the receiver operating characteristic curve (AUC). Gene Ontology and KEGG analyses were performed to evaluate the HER2-low signature genes functional enrichment. A HER2-low signature was computed based on HER2 IHC category-specific DEGs. The twenty genes included in the signature were significantly enriched with lipid and steroid metabolism pathways, peptidase regulation, and humoral immune response. The HER2-low signature values showed a bell-shaped distribution across IHC categories (low values in 0 and 3+; high values in 1+ and 2+), effectively distinguishing HER2-low from 0 (p < 0.001) to 3+ (p < 0.001). Notably, the signature values were higher in tumors scored with 1+ as compared to 0. The HER2-low signature association with IHC categories and its bell-shaped distribution was confirmed in the independent INT3, TCGA and GSE81538 datasets. In the combined INT1 and INT3 datasets, the HER2-low signature achieved an AUC value of 0.74 (95% confidence interval, CI 0.67–0.81) in distinguishing HER2-low vs. the other categories, outperforming the individual ERBB2 mRNA AUC value of 0.52 (95% CI 0.43–0.60). These results represent a proof-of-concept for an observer-independent gene-expression-based classifier of HER2-low status. The herein identified 20-gene signature shows promise in distinguishing between HER2 0 and HER2-low expressing tumors, including those scored as 1+ at IHC, and in developing a selection approach for ADCs candidates.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3