The regular pattern of metabolite changes in mushroom Inonotus hispidus in different growth periods and exploration of their indicator compounds

Author:

Li Zhijun,Bao Haiying,Han Chen,Song Mingjie

Abstract

AbstractInonotus hispidus is a valuable and rare edible and medicinal mushroom with extremely high nutritional and medicinal value. However, there is no holistic insight to elucidate the molecular basis of the differentiated usage and accurate annotation of physiological maturity to fluctuating yields and quality. This study aimed to figure out the fruiting bodies' metabolites change regulation and potential maturating indicators to distinguish different quality I. hispidus. We applied non-targeted ultra-high performance liquid chromatography and high-resolution mass spectrometry combined and with multivariate analysis and analyzed cultivated and wild mushroom I. hispidus in different growth periods (budding, mature and aging). With the fruiting bodies maturating, 1358 metabolites were annotated, 822 and 833 metabolites abundances changed greater than or equal to 1 time from the budding period to the aging period in abundance in cultivated and wild, the total polysaccharides, crude fat, total flavonoids, and total terpenes increased at first and then decreased. Total amino acids, crude protein, and total polyphenols decreased, while the total steroids increased linearly. The change of metabolites showed certain regularity. Metabolic pathways enrichment analysis showed that these metabolites are involved in glycolysis, biosynthesis of amino acids, organic acid metabolism, glycine-serine-and-threonine metabolism, tricarboxylic acid cycle, purine metabolism, and pyrimidine metabolism. In addition, ergosterol peroxide and (22E)-ergosta-4,6,8(14),22-tetraen-3-one can be used as indicator compounds, and their contents increase linearly with the fruiting bodies of I. hispidus’ physiological maturation. This comprehensive analysis will help to evaluate the edible values and facilitate exploitation in mushroom I. hispidus.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3