Ni2+ and Cu2+ complexes of N-(2,6-dichlorophenyl)-N-mesityl formamidine dithiocarbamate structural and functional properties as CYP3A4 potential substrates

Author:

Oladipo Segun D.,Zamisa Sizwe J.,Badeji Abosede A.,Ejalonibu Murtala A.,Adeleke Adesola A.,Lawal Isiaka A.,Henni Amr,Lawal Monsurat M.

Abstract

AbstractMetal compounds continued to attract diverse applications due to their malleability in several capacities. In this study, we present our findings on the crystal structures and functional properties of Ni2+ and Cu2+ complexes of N'-(2,6-dichlorophenyl)-N-mesitylformamidine dithiocarbamate (L) comprising [Ni-(L)2] (1) and [Cu-(L)2] (2) with a four-coordinate metal center. We established the two complex structures through 1H and 13C nuclear magnetic resonance (NMR), elemental, and single-crystal X-ray analysis. The analyses showed that the two complexes are isomorphous, having P21/c as a space group and a unit-cell similarity index (π) of 0.002. The two complexes conform to a distorted square planar geometry around the metal centers. The calculated and experimental data, including bond lengths, angles, and NMR values, are similar. Hirshfeld surface analysis revealed the variational contribution of the different types of intermolecular contacts driven by the crystal lattice of the two solvated complexes. Our knowledge of the potential biological implication of these structures enabled us to probe the compounds as prospective CYP3A4 inhibitors. This approach mimics current trends in pharmaceutical design and biomedicine by incorporating potentially active molecules into various media to predict their biological efficacies. The simulations show appreciable binding of compounds 1 and 2 to CYP3A4 with average interaction energies of –97 and –87 kcal/mol, respectively. The protein attains at least five conformational states in the three studied models using a Gaussian Mixture Model-based clustering and free energy prediction. Electric field analysis shows the crucial residues to substrate binding at the active site, enabling CYP3A4 structure to function prediction. The predicted inhibition with these Ni2+ and Cu2+ complexes indicates that CYP3A4 overexpression in a diseased state like cancer would reduce, thereby increasing the chemotherapeutic compounds' shelf-lives for adsorption. This multidimensional study addresses various aspects of molecular metal electronics, including their application as substrate-mimicking inhibitors. The outcome would enable further research on bio-metal compounds of critical potential.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3