Advanced humidity sensing properties of CuO ceramics

Author:

Sreejivungsa Kaniknun,Thanamoon Noppakorn,Phromviyo Nutthakritta,Jarernboon Wirat,Takesada Masaki,Thongbai Prasit

Abstract

AbstractThis research explores the capacitive humidity sensing properties of CuO ceramic, selected for its simplicity as an oxide and ease of fabrication, in addition to its remarkable dielectric properties. The CuO sample was fabricated by sintering at 980 °C for 5 h. A microstructure with a relative density of 88.9% was obtained. X-ray diffraction confirmed the formation of a pure CuO phase. Broadband dielectric spectroscopy revealed that the observed giant dielectric properties at room temperature (RT) were attributed to extrinsic effects, including the internal barrier layer capacitor and sample-electrode contact effects. A key focus of this study was to examine the giant dielectric properties of CuO ceramic as a function of relative humidity (RH) at RT and frequencies of 102 and 103 Hz. It was observed that the capacitance of CuO continuously increased with rising RH levels, ranging from 30 to 95%. Notably, the maximum hysteresis errors were constrained to 2.3 and 3.3% at 102 and 103 Hz, respectively. Additionally, the CuO ceramic demonstrated very fast response and recovery times, approximately 2.8 and 0.95 min, respectively. The repeatability of the humidity response of the capacitance was also established. Overall, this research highlights the high potential of CuO as a giant dielectric material for application in humidity sensors.

Funder

Fundamental Fund of Khon Kaen University and the National Science, Research, and Innovation Fund

Hokkaido University, Grant-in-Aid for Scientific Research

Research and Graduate Studies Office of Khon Kaen University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3