Author:
Santos Carlos D.,Ramesh Hariprasath,Ferraz Rafael,Franco Aldina M. A.,Wikelski Martin
Abstract
AbstractWind energy production has expanded as an alternative to carbon emitting fossil fuels, but is causing impacts on wildlife that need to be addressed. Soaring birds show concerning rates of collision with turbine rotor blades and losses of critical habitat. However, how these birds interact with wind turbines is poorly understood. We analyzed high-frequency GPS tracking data of 126 black kites (Milvus migrans) moving near wind turbines to identify behavioural mechanisms of turbine avoidance and their interaction with environmental variables. Birds flying within 1000 m from turbines and below the height of rotor blades were less likely to be oriented towards turbines than expected by chance, this pattern being more striking at distances less than 750 m. Within the range of 750 m, birds showed stronger avoidance when pushed by the wind in the direction of the turbines. Birds flying above the turbines did not change flight directions with turbine proximity. Sex and age of birds, uplift conditions and turbine height, showed no effect on flight directions although these factors have been pointed as important drivers of turbine collision by soaring birds. Our findings suggest that migrating black kites recognize the presence of wind turbines and behave in a way to avoid then. This may explain why this species presents lower collision rates with wind turbines than other soaring birds. Future studies should clarify if turbine avoidance behaviour is common to other soaring birds, particularly those that are facing high fatality rates due to collision.
Funder
Max Planck institute für Verhaltensbiologie
Fundação para a Ciência e a Tecnologia
European Commission
Deutsche Forschungsgemeinschaft
Max Planck Institute of Animal Behavior
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. REN21. Renewables 2018 global status report. (REN21 Secretariat, 2018).
2. Schuster, E., Bulling, L. & Koppel, J. Consolidating the state of knowledge: A synoptical review of wind energy’s wildlife effects. Environ. Manag. 56, 300–331 (2015).
3. Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. R. Soc. Lond. B Biol. Sci. 284, 20170829 (2017).
4. Marques, A. T. et al. Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biol. Conserv. 179, 40–52 (2014).
5. Katzner, T. E. et al. Topography drives migratory flight altitude of golden eagles: Implications for on-shore wind energy development. J. Appl. Ecol. 49, 1178–1186 (2012).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献