Privacy-preserving for assembly deviation prediction in a machine learning model of hydraulic equipment under value chain collaboration

Author:

Qiu Hao,Feng Yixiong,Hong Zhaoxi,Li Kangjie,Tan Jianrong

Abstract

AbstractHydraulic equipment, as a typical mechanical product, has been wildly used in various fields. Accurate acquisition and secure transmission of assembly deviation data are the most critical issues for hydraulic equipment manufacturer in the PLM-oriented value chain collaboration. Existing deviation prediction methods are mainly used for assembly quality control, which concentrate in the product design and assembly stage. However, the actual assembly deviations generated in the service stage can be used to guide the equipment maintenance and tolerance design. In this paper, a high-fidelity prediction and privacy-preserving method is proposed based on the observable assembly deviations. A hierarchical graph attention network (HGAT) is established to predict the assembly feature deviations. The hierarchical generalized representation and differential privacy reconstruction techniques are also introduced to generate the graph attention network model for assembly deviation privacy-preserving. A derivation gradient matrix is established to calculate the defined modified necessary index of assembly parts. Two privacy-preserving strategies are designed to protect the assembly privacy of node representation and adjacent relationship. The effectiveness and superiority of the proposed method are demonstrated by a case study with a four-column hydraulic press.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3