Demonstrating the successful application of synthetic learning in spine surgery for training multi–center models with increased patient privacy

Author:

Schonfeld Ethan,Veeravagu Anand

Abstract

AbstractFrom real–time tumor classification to operative outcome prediction, applications of machine learning to neurosurgery are powerful. However, the translation of many of these applications are restricted by the lack of “big data” in neurosurgery. Important restrictions in patient privacy and sharing of imaging data reduce the diversity of the datasets used to train resulting models and therefore limit generalizability. Synthetic learning is a recent development in machine learning that generates synthetic data from real data and uses the synthetic data to train downstream models while preserving patient privacy. Such an approach has yet to be successfully demonstrated in the spine surgery domain. Spine radiographs were collected from the VinDR–SpineXR dataset, with 1470 labeled as abnormal and 2303 labeled as normal. A conditional generative adversarial network (GAN) was trained on the radiographs to generate a spine radiograph and normal/abnormal label. A modified conditional GAN (SpineGAN) was trained on the same task. A convolutional neural network (CNN) was trained using the real data to label abnormal radiographs. A CNN was trained to label abnormal radiographs using synthetic images from the GAN and in a separate experiment from SpineGAN. Using the real radiographs, an AUC of 0.856 was achieved in abnormality classification. Training on synthetic data generated by the standard GAN (AUC of 0.814) and synthetic data generated by our SpineGAN (AUC of 0.830) resulted in similar classifier performance. SpineGAN generated images with higher FID and lower precision scores, but with higher recall and increased performance when used for synthetic learning. The successful application of synthetic learning was demonstrated in the spine surgery domain for the classification of spine radiographs as abnormal or normal. A modified domain–relevant GAN is introduced for the generation of spine images, evidencing the importance of domain–relevant generation techniques in synthetic learning. Synthetic learning can allow neurosurgery to use larger and more diverse patient imaging sets to train more generalizable algorithms with greater patient privacy.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3