Time-dependent specific molecular signatures of inflammation and remodelling are associated with trimethylamine-N-oxide (TMAO)-induced endothelial cell dysfunction

Author:

Shanmugham Meyammai,Devasia Arun George,Chin Yu Ling,Cheong Kang Hao,Ong Eng Shi,Bellanger Sophie,Ramasamy Adaikalavan,Leo Chen Huei

Abstract

AbstractEndothelial dysfunction is a critical initiating factor contributing to cardiovascular diseases, involving the gut microbiome-derived metabolite trimethylamine N-oxide (TMAO). This study aims to clarify the time-dependent molecular pathways by which TMAO mediates endothelial dysfunction through transcriptomics and metabolomics analyses in human microvascular endothelial cells (HMEC-1). Cell viability and reactive oxygen species (ROS) generation were also evaluated. TMAO treatment for either 24H or 48H induces reduced cell viability and enhanced oxidative stress. Interestingly, the molecular signatures were distinct between the two time-points. Specifically, few Gene Ontology biological processes (BPs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were modulated after a short (24H) compared to a long (48H) treatment. However, the KEGG signalling pathways namely “tumour necrosis factor (TNF)” and “cytokine-cytokine receptor interaction” were downregulated at 24H but activated at 48H. In addition, at 48H, BPs linked to inflammatory phenotypes were activated (confirming KEGG results), while BPs linked to extracellular matrix (ECM) structural organisation, endothelial cell proliferation, and collagen metabolism were repressed. Lastly, metabolic profiling showed that arachidonic acid, prostaglandins, and palmitic acid were enriched at 48H. This study demonstrates that TMAO induces distinct time-dependent molecular signatures involving inflammation and remodelling pathways, while pathways such as oxidative stress are also modulated, but in a non-time-dependent manner.

Funder

SUTD Start-up Research Grant

SUTD-ZJU Grant

SUTD Kickstarter Initiative

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3