Author:
Leng Songqi,Barghi Shahzad,Xu Chunbao
Abstract
AbstractDue to high energy content and environmentally friendly attributes, hydrogen is regarded as an ideal energy carrier, serving as a viable alternative to fossil fuels. Steam reforming of fossil fuels is currently the dominant source of hydrogen production with negative environmental impacts, therefore aqueous phase reforming (APR) of biomass derivatives represents an attractive method for green hydrogen production due to its relatively mild operating temperatures and carbon neutrality. This work provides an overview of the types of catalysts employed in the APR process and their pros and cons regarding their performance and operating conditions. Effects of various catalyst supports, e.g., alloy oxides, composite active metals and ceria, and feedstocks, on performance of the catalysts in APR are also discussed. Recent advances and challenges in APR are summarized into several aspects, (1) doping metals/inorganics into support, (2) structural manipulation and defect induction to support, (3) synthesis of single-atom catalysts, (4) development of more eco-friendly processes or catalysts. The present review can provide guidance for prospective development of efficient catalysts and supports for APR of biomass derivatives for green H2 production.
Funder
China Scholarship Council
Natural Science and Engineering Research Council of Canada
the Start-up grant from City University of Hong Kong
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献