Networks of cortical activity show graded responses to perinatal asphyxia

Author:

Syvälahti TimoORCID,Tuiskula Anna,Nevalainen Päivi,Metsäranta Marjo,Haataja Leena,Vanhatalo Sampsa,Tokariev Anton

Abstract

Abstract Background Perinatal asphyxia often leads to hypoxic-ischemic encephalopathy (HIE) with a high risk of neurodevelopmental consequences. While moderate and severe HIE link to high morbidity, less is known about brain effects of perinatal asphyxia with no or only mild HIE. Here, we test the hypothesis that cortical activity networks in the newborn infants show a dose-response to asphyxia. Methods We performed EEG recordings for infants with perinatal asphyxia/HIE of varying severity (n = 52) and controls (n = 53) and examined well-established computational metrics of cortical network activity. Results We found graded alterations in cortical activity networks according to severity of asphyxia/HIE. Furthermore, our findings correlated with early clinical recovery measured by the time to attain full oral feeding. Conclusion We show that both local and large-scale correlated cortical activity are affected by increasing severity of HIE after perinatal asphyxia, suggesting that HIE and perinatal asphyxia are better represented as a continuum rather than the currently used discreet categories. These findings imply that automated computational measures of cortical function may be useful in characterizing the dose effects of adversity in the neonatal brain; such metrics hold promise for benchmarking clinical trials via patient stratification or as early outcome measures. Impact Perinatal asphyxia causes every fourth neonatal death worldwide and provides a diagnostic and prognostic challenge for the clinician. We report that infants with perinatal asphyxia show specific graded responses in cortical networks according to severity of asphyxia and ensuing hypoxic-ischaemic encephalopathy. Early EEG recording and automated computational measures of brain function have potential to help in clinical evaluation of infants with perinatal asphyxia.

Publisher

Springer Science and Business Media LLC

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3