Unfolding neural diversity: how dynamic three-dimensional genome architecture regulates brain function and disease

Author:

Logeman Brandon L.ORCID,Grieco Steven F.,Holmes Todd C.ORCID,Xu XiangminORCID

Abstract

Abstract The advent of single cell multi-omic technologies has ushered in a revolution in how we study the impact of three-dimensional genome organization on brain cellular composition and function. Transcriptomic and epigenomic studies reveal enormous cellular diversity that is present in mammalian nervous systems, raising the question, “how does this diversity arise and for what is its use?” Advances in the field of three-dimensional nuclear architecture have illuminated our understanding of how genome folding gives rise to dynamic gene expression programs important in healthy brain function and in disease. In this review we highlight recent work defining how neuronal identity, maturation, and plasticity are shaped by genome architecture. We discuss how newly identified genetic variations influence genome architecture and contribute to the evolution of species-unique neuronal and behavioral functional traits. We include examples for both humans and model organisms in which maladaptive genomic architecture is a causal agent in disease. Finally, we make conclusions and address future perspectives of dynamic three-dimensional genome (4D nucelome) research.

Funder

U.S. Department of Health & Human Services | National Institutes of Health

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3