Fyn nanoclustering requires switching to an open conformation and is enhanced by FTLD-Tau biomolecular condensates

Author:

Martínez-Mármol RamónORCID,Small Christopher,Jiang Anmin,Palliyaguru Tishila,Wallis Tristan P.,Gormal Rachel S.,Sibarita Jean-Baptiste,Götz JürgenORCID,Meunier Frédéric A.ORCID

Abstract

AbstractFyn is a Src kinase that controls critical signalling cascades and has been implicated in learning and memory. Postsynaptic enrichment of Fyn underpins synaptotoxicity in dementias such as Alzheimer’s disease and frontotemporal lobar degeneration with Tau pathology (FTLD-Tau). The FLTD P301L mutant Tau is associated with a higher propensity to undergo liquid–liquid phase separation (LLPS) and form biomolecular condensates. Expression of P301L mutant Tau promotes aberrant trapping of Fyn in nanoclusters within hippocampal dendrites by an unknown mechanism. Here, we used single-particle tracking photoactivated localisation microscopy to demonstrate that the opening of Fyn into its primed conformation promotes its nanoclustering in dendrites leading to increased Fyn/ERK/S6 downstream signalling. Preventing the auto-inhibitory closed conformation of Fyn through phospho-inhibition or through perturbation of its SH3 domain increased Fyn’s nanoscale trapping, whereas inhibition of the catalytic domain had no impact. By combining pharmacological and genetic approaches, we demonstrate that P301L Tau enhanced both Fyn nanoclustering and Fyn/ERK/S6 signalling via its ability to form biomolecular condensates. Together, our findings demonstrate that Fyn alternates between a closed and an open conformation, the latter being enzymatically active and clustered. Furthermore, pathogenic immobilisation of Fyn relies on the ability of P301L Tau to form biomolecular condensates, thus highlighting the critical importance of LLPS in controlling nanoclustering and downstream intracellular signalling events.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Psychiatry and Mental health,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3