Ultracompact meta-imagers for arbitrary all-optical convolution

Author:

Fu Weiwei,Zhao Dong,Li Ziqin,Liu Songde,Tian Chao,Huang Kun

Abstract

AbstractElectronic digital convolutions could extract key features of objects for data processing and information identification in artificial intelligence, but they are time-cost and energy consumption due to the low response of electrons. Although massless photons enable high-speed and low-loss analog convolutions, two existing all-optical approaches including Fourier filtering and Green’s function have either limited functionality or bulky volume, thus restricting their applications in smart systems. Here, we report all-optical convolutional computing with a metasurface-singlet or -doublet imager, considered as the third approach, where its point spread function is modified arbitrarily via a complex-amplitude meta-modulator that enables functionality-unlimited kernels. Beyond one- and two-dimensional spatial differentiation, we demonstrate real-time, parallel, and analog convolutional processing of optical and biological specimens with challenging pepper-salt denoising and edge enhancement, which significantly enrich the toolkit of all-optical computing. Such meta-imager approach bridges multi-functionality and high-integration in all-optical convolutions, meanwhile possessing good architecture compatibility with digital convolutional neural networks.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference56 articles.

1. Krizhevsky, A. Sutskever, I., & Hinton, G. E. Imagenet classification with deep convolutional neural networks. in Proc. 25th International Conference on Neural Information Processing Systems. (NIPS, Lake Tahoe, 2012) 1097–1105.

2. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

3. Wang, P. S. et al. O-Cnn: Octree-based convolutional neural networks for 3d shape analysis. ACM Trans. Graph. 36, 72 (2017).

4. Zhang, C. et al. Optimizing FPGA-based accelerator design for deep convolutional neural networks. in Proc. 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. (ACMs, Monterey, 2015) 161–170.

5. Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. in Proc. 44th Annual International Symposium on Computer Architecture. (ACMs, Toronto, 2017) 1–12.

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3