PhaseFIT: live-organoid phase-fluorescent image transformation via generative AI

Author:

Zhao Junhan,Wang XiyueORCID,Zhu Junyou,Chukwudi Chijioke,Finebaum Andrew,Zhang Jun,Yang Sen,He Shijie,Saeidi Nima

Abstract

AbstractOrganoid models have provided a powerful platform for mechanistic investigations into fundamental biological processes involved in the development and function of organs. Despite the potential for image-based phenotypic quantification of organoids, their complex 3D structure, and the time-consuming and labor-intensive nature of immunofluorescent staining present significant challenges. In this work, we developed a virtual painting system, PhaseFIT (phase-fluorescent image transformation) utilizing customized and morphologically rich 2.5D intestinal organoids, which generate virtual fluorescent images for phenotypic quantification via accessible and low-cost organoid phase images. This system is driven by a novel segmentation-informed deep generative model that specializes in segmenting overlap and proximity between objects. The model enables an annotation-free digital transformation from phase-contrast to multi-channel fluorescent images. The virtual painting results of nuclei, secretory cell markers, and stem cells demonstrate that PhaseFIT outperforms the existing deep learning-based stain transformation models by generating fine-grained visual content. We further validated the efficiency and accuracy of PhaseFIT to quantify the impacts of three compounds on crypt formation, cell population, and cell stemness. PhaseFIT is the first deep learning-enabled virtual painting system focused on live organoids, enabling large-scale, informative, and efficient organoid phenotypic quantification. PhaseFIT would enable the use of organoids in high-throughput drug screening applications.

Funder

Foundation for the National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3