Abstract
AbstractReflective displays have stimulated considerable interest because of their friendly readability and low energy consumption. Herein, we develop a reflective display technique via an electro-microfluidic assembly of particles (eMAP) strategy whereby colored particles assemble into annular and planar structures inside a dyed water droplet to create “open” and “closed” states of a display pixel. Water-in-oil droplets are compressed within microwells to form a pixel array. The particles dispersed in droplets are driven by deformation-strengthened dielectrophoretic force to achieve fast and reversible motion and assemble into multiple structures. This eMAP based device can display designed information in three primary colors with ≥170° viewing angle, ~0.14 s switching time, and bistability with an optimized material system. This proposed technique demonstrates the basis of a high-performance and energy-saving reflective display, and the display speed and color quality could be further improved by structure and material optimization; exhibiting a potential reflective display technology.
Funder
National Natural Science Foundation of China
Guangdong Province Basic and Applied Research Fund
International Cooperation Base of Infrared Reflection Liquid Crystal Polymers and Device
Science and Technology Program of Guangzhou
ARC Centre of Excellence in Exciton Science
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献