Abstract
AbstractSelf-assembly of particle-like dissipative solitons, in the presence of mutual interactions, emphasizes the vibrant concept of soliton molecules in varieties of laser resonators. Controllable manipulation of the molecular patterns, held by the degrees of freedom of internal motions, still remains challenging to explore more efficient and subtle tailoring approaches for the increasing demands. Here, we report a new phase-tailored quaternary encoding format based on the controllable internal assembly of dissipative soliton molecules. Artificial manipulation of the energy exchange of soliton-molecular elements stimulates the deterministic harnessing of the assemblies of internal dynamics. Self-assembled soliton molecules are tailored into four phase-defined regimes, thus constituting the phase-tailored quaternary encoding format. Such phase-tailored streams are endowed with great robustness and are resistant to significant timing jitter. All these results experimentally demonstrate the programmable phase tailoring and exemplify the application of the phase-tailored quaternary encoding, prospectively promoting high-capacity all-optical storage.
Funder
Open Project Program of Wuhan National Laboratory for Optoelectronics
China Postdoctoral Science Foundation
National Key Research and Development Program of China
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献