Cyborg insect repeatable self-righting locomotion assistance using bio-inspired 3D printed artificial limb

Author:

Montagut Marques Marc Josep,Yuxuan Qiu,Sato Hirotaka,Umezu Shinjiro

Abstract

AbstractCyborg insects have emerged as a promising solution for rescue missions, owing to their distinctive and advantageous mobility characteristics. These insects are outfitted with electronic backpacks affixed to their anatomical structures, which endow them with imperative communication, sensing, and control capabilities essential for effecting survivor retrieval. Nevertheless, the attachment of supplementary loads to the insect’s body can exert adverse effects on their intrinsic self-righting locomotion when confronted with fall or shock scenarios. To address this challenge, the present study introduces a bio-inspired 3D-printed artificial limb that serves to facilitate the maneuverability of cyborg insects amidst unpredictable conditions. Drawing inspiration from the natural self-righting motion exhibited by Coccinellidae, we have successfully identified a solution that can be transferred to the electronic backpack utilized by G. portentosa. Incorporation of the bio-inspired artificial wing-like limb has notably enabled the cyborg insect to achieve a remarkable tilting angle of 112°, thereby significantly amplifying the success ratio of self-righting under conditions closely emulating those prevalent in disaster areas. Moreover, we have replicated the expansion and contraction kinematics to ensure seamless motion progression within confined spaces. Importantly, the fabricated device proffered in this study has been meticulously designed for facile reproducibility employing commonly available tools, thereby serving as an inspirational catalyst for fellow researchers engaged in the advancement of 3D-printed limb development aimed at expanding the functional capacities of cyborg insects.

Funder

Ministry of Education - Singapore

NTUitive Pte Ltd

Japan Society for the Promotion of Science

JST-Mirai Program

Japan Science and Technology Corporation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3