All real projective measurements can be self-tested

Author:

Chen RanyiliuORCID,Mančinska Laura,Volčič JurijORCID

Abstract

AbstractEntangled quantum systems feature non-local correlations that are stronger than could be realized classically. This property makes it possible to perform self-testing, the strongest form of quantum functionality verification, which allows a classical user to deduce the quantum state and measurements used to produce a given set of measurement statistics. While self-testing of quantum states is well understood, self-testing of measurements, especially in high dimensions, remains relatively unexplored. Here we prove that every real projective measurement can be self-tested. Our approach employs the idea that existing self-tests can be extended to verify additional untrusted measurements, known as post-hoc self-testing. We formalize the method of post-hoc self-testing and establish the condition under which it can be applied. Using this condition, we construct self-tests for all real projective measurements. We build on this result to develop an iterative self-testing technique that provides a clear methodology for constructing new self-tests from pre-existing ones.

Funder

Villum Fonden

Publisher

Springer Science and Business Media LLC

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3