Circuit quantum electrodynamics detection of induced two-fold anisotropic pairing in a hybrid superconductor–ferromagnet bilayer

Author:

Bøttcher C. G. L.ORCID,Poniatowski N. R.ORCID,Grankin A.,Wesson M. E.,Yan Z.,Vool U.ORCID,Galitski V. M.,Yacoby A.ORCID

Abstract

AbstractHybrid systems represent one of the frontiers in the study of unconventional superconductivity and are a promising platform to realize topological superconducting states. These materials are challenging to probe using many conventional measurement techniques because of their mesoscopic dimensions, and therefore require new experimental probes so that they can be successfully characterized. Here, we demonstrate a probe that enables us to measure the superfluid density of micrometre-size superconductors using microwave techniques drawn from circuit quantum electrodynamics. We apply this technique to a superconductor–ferromagnet bilayer and find that the proximity-induced superfluid density is two-fold anisotropic within the plane of the sample. It also exhibits power-law temperature scaling that is indicative of a nodal superconducting state. These experimental results are consistent with the theoretically predicted signatures of induced triplet pairing with a nodal p-wave order parameter. Moreover, we observe modifications to the microwave response at frequencies near the ferromagnetic resonance, suggesting a coupling between the spin dynamics and induced superconducting order in the ferromagnetic layer. Our experimental technique can be employed more widely, for example to study fragile unconventional superconductivity in low-dimensional materials such as van der Waals heterostructures.

Funder

U.S. Department of Energy

U.S. Department of Defense

United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office

Simons Foundation

National Science Foundation

Gordon and Betty Moore Foundation

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3