Abstract
AbstractThe dielectric constant (ϵ) is a critical parameter utilized in the design of polymeric dielectrics for energy storage capacitors, microelectronic devices, and high-voltage insulations. However, agile discovery of polymer dielectrics with desirable ϵ remains a challenge, especially for high-energy, high-temperature applications. To aid accelerated polymer dielectrics discovery, we have developed a machine-learning (ML)-based model to instantly and accurately predict the frequency-dependent ϵ of polymers with the frequency range spanning 15 orders of magnitude. Our model is trained using a dataset of 1210 experimentally measured ϵ values at different frequencies, an advanced polymer fingerprinting scheme and the Gaussian process regression algorithm. The developed ML model is utilized to predict the ϵ of synthesizable 11,000 candidate polymers across the frequency range 60–1015 Hz, with the correct inverse ϵ vs. frequency trend recovered throughout. Furthermore, using ϵ and another previously studied key design property (glass transition temperature, Tg) as screening criteria, we propose five representative polymers with desired ϵ and Tg for capacitors and microelectronic applications. This work demonstrates the use of surrogate ML models to successfully and rapidly discover polymers satisfying single or multiple property requirements for specific applications.
Funder
United States Department of Defense | United States Navy | Office of Naval Research
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献