Machine learning enhanced analysis of EBSD data for texture representation

Author:

Wanni J.ORCID,Bronkhorst C. A.ORCID,Thoma D. J.ORCID

Abstract

AbstractGenerating reduced-order, synthetic grain structure datasets that accurately represent the measured grain structure of a material is important for reducing the cost and increasing the accuracy of computational crystal plasticity efforts. This study introduces a machine-learning-based approach, termed texture adaptive clustering and sampling (TACS), for generating representative Euler angle datasets that accurately mimic the crystallographic texture. The TACS approach employs K-means clustering and density-based sampling in a closed-loop iteration to create representative Euler angle datasets. Proof-of-principle experiments were performed on rolled and recrystallized low-carbon steel. Validation of the TACS approach was extended to twenty-two datasets, varying lattice structures, and complex crystallographic textures, thereby encompassing a broad range of materials and crystal structures. Kolmogorov-Smirnov (K-S) test comparisons underscore the performance of the TACS approach over traditional electron backscatter diffraction EBSD dataset reduction techniques, with average K-S test scores nearing 0.9, indicating a high-fidelity representation of the original datasets. In contrast, conventional methods display scores below 0.3, indicating less reliability of the structure representation. The independence of the TACS approach from material texture and its capability to autonomously generate datasets with predetermined data points demonstrates its unbiased potential in streamlining dataset preparation for crystallographic analysis.

Funder

U.S. Department of Defense

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3