Tunable interstitial and vacancy diffusivity by chemical ordering control in CrCoNi medium-entropy alloy

Author:

Li YangenORCID,Du Jun-PingORCID,Shinzato ShuheiORCID,Ogata ShigenobuORCID

Abstract

AbstractIn this study, we utilized a quantitative atomistic analysis approach to investigate the impact of chemical ordering structures on the diffusion behavior of interstitials and vacancies within the CrCoNi medium entropy alloy (MEA), employing an advanced neural network interatomic potential (NNP). We discovered that the degree of chemical ordering, which can be precisely controlled through annealing at elevated temperatures, significantly influences both interstitial and vacancy diffusion. This phenomenon contributes to the notable sluggish diffusion characteristic of CrCoNi, largely attributable to the restriction of diffusion pathways in regions with lower degree of chemical ordering. We also emphasized the crucial role of operating temperature on diffusion, which should be remained well below the annealing temperature to preserve the sluggish diffusion effect. Our research sheds light on the interplay between chemical ordering and defect diffusion in MEAs, and it proposes effective strategies for tailoring the diffusivity of MEAs by altering their chemical ordering. These insights are instrumental in the development of next-generation materials, which are optimized for use in challenging environments, such as high-temperature and irradiation conditions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3