Abstract
AbstractDuring surgery, rapid and accurate histopathological diagnosis is essential for clinical decision making. Yet the prevalent method of intra-operative consultation pathology is intensive in time, labour and costs, and requires the expertise of trained pathologists. Here we show that biopsy samples can be analysed within 30 min by sequentially assessing the physical phenotypes of singularized suspended cells dissociated from the tissues. The diagnostic method combines the enzyme-free mechanical dissociation of tissues, real-time deformability cytometry at rates of 100–1,000 cells s−1 and data analysis by unsupervised dimensionality reduction and logistic regression. Physical phenotype parameters extracted from brightfield images of single cells distinguished cell subpopulations in various tissues, enhancing or even substituting measurements of molecular markers. We used the method to quantify the degree of colon inflammation and to accurately discriminate healthy and tumorous tissue in biopsy samples of mouse and human colons. This fast and label-free approach may aid the intra-operative detection of pathological changes in solid biopsies.
Funder
Deutsche Forschungsgemeinschaft
Interdisziplinäre Zentrum für Klinische Forschung (IZKF) Erlangen; Research Grant A79
Interdisziplinäre Zentrum für Klinische Forschung (IZKF) Erlangen; clinician scientist program step 2
Max-Planck-Gesellschaft
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献