Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration

Author:

Zhu Lisha,Luo Dan,Liu YanORCID

Abstract

AbstractNatural bone is a mineralized biological material, which serves a supportive and protective framework for the body, stores minerals for metabolism, and produces blood cells nourishing the body. Normally, bone has an innate capacity to heal from damage. However, massive bone defects due to traumatic injury, tumor resection, or congenital diseases pose a great challenge to reconstructive surgery. Scaffold-based tissue engineering (TE) is a promising strategy for bone regenerative medicine, because biomaterial scaffolds show advanced mechanical properties and a good degradation profile, as well as the feasibility of controlled release of growth and differentiation factors or immobilizing them on the material surface. Additionally, the defined structure of biomaterial scaffolds, as a kind of mechanical cue, can influence cell behaviors, modulate local microenvironment and control key features at the molecular and cellular levels. Recently, nano/micro-assisted regenerative medicine becomes a promising application of TE for the reconstruction of bone defects. For this reason, it is necessary for us to have in-depth knowledge of the development of novel nano/micro-based biomaterial scaffolds. Thus, we herein review the hierarchical structure of bone, and the potential application of nano/micro technologies to guide the design of novel biomaterial structures for bone repair and regeneration.

Publisher

Springer Science and Business Media LLC

Subject

General Dentistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3