The CREG1-FBXO27-LAMP2 axis alleviates diabetic cardiomyopathy by promoting autophagy in cardiomyocytes

Author:

Liu Dan,Xing Ruinan,Zhang Quanyu,Tian Xiaoxiang,Qi Yanping,Song Haixu,Liu Yanxia,Yu Haibo,Zhang Xiaolin,Jing Quanmin,Yan Chenghui,Han YalingORCID

Abstract

AbstractAutophagy plays an important role in the development of diabetic cardiomyopathy. Cellular repressor of E1A-stimulated genes 1 (CREG1) is an important myocardial protective factor. The aim of this study was to investigate the effects and mechanisms of CREG1 in diabetic cardiomyopathy. Male C57BL/6 J mice, Creg1 transgenic mice and cardiac-specific knockout mice were used to establish a type 2 diabetes model. Small animal ultrasound, Masson’s staining and western blotting were used to evaluate cardiac function, myocardial fibrosis and autophagy. Neonatal mouse cardiomyocytes (NMCMs) were stimulated with palmitate, and the effects of CREG1 on NMCMs autophagy were examined. CREG1 deficiency exacerbated cardiac dysfunction, cardiac hypertrophy and fibrosis in mice with diabetic cardiomyopathy, which was accompanied by exacerbated autophagy dysfunction. CREG1 overexpression improved cardiac function and ameliorated cardiac hypertrophy and fibrosis in diabetic cardiomyopathy by improving autophagy. CREG1 protein expression was decreased in palmitate-induced NMCMs. CREG1 knockdown exacerbated cardiomyocyte hypertrophy and inhibited autophagy. CREG1 overexpression inhibited cardiomyocyte hypertrophy and improved autophagy. LAMP2 overexpression reversed the effect of CREG1 knockdown on palmitate-induced inhibition of cardiomyocyte autophagy. CREG1 inhibited LAMP2 protein degradation by inhibiting the protein expression of F-box protein 27 (FBXO27). Our findings indicate new roles of CREG1 in the development of diabetic cardiomyopathy.

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3