Leukocyte invasion of the brain after peripheral trauma in zebrafish (Danio rerio)

Author:

Chen Xiang-KeORCID,Kwan Joseph Shiu-Kwong,Wong Gordon Tin-Chun,Yi Zhen-Ni,Ma Alvin Chun-HangORCID,Chang Raymond Chuen-ChungORCID

Abstract

AbstractDespite well-known systemic immune reactions in peripheral trauma, little is known about their roles in posttraumatic neurological disorders, such as anxiety, sickness, and cognitive impairment. Leukocyte invasion of the brain, a common denominator of systemic inflammation, is involved in neurological disorders that occur in peripheral inflammatory diseases, whereas the influences of peripheral leukocytes on the brain after peripheral trauma remain largely unclear. In this study, we found that leukocytes, largely macrophages, transiently invaded the brain of zebrafish larvae after peripheral trauma through vasculature-independent migration, which was a part of the systemic inflammation and was mediated by interleukin-1b (il1b). Notably, myeloid cells in the brain that consist of microglia and invading macrophages were implicated in posttraumatic anxiety-like behaviors, such as hyperactivity (restlessness) and thigmotaxis (avoidance), while a reduction in systemic inflammation or myeloid cells can rescue these behaviors. In addition, invading leukocytes together with microglia were found to be responsible for the clearance of apoptotic cells in the brain; however, they also removed the nonapoptotic cells, which suggested that phagocytes have dual roles in the brain after peripheral trauma. More importantly, a category of conserved proteins between zebrafish and humans or rodents that has been featured in systemic inflammation and neurological disorders was determined in the zebrafish brain after peripheral trauma, which supported that zebrafish is a translational model of posttraumatic neurological disorders. These findings depicted leukocyte invasion of the brain during systemic inflammation after peripheral trauma and its influences on the brain through il1b-dependent mechanisms.

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Biochemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3