Cerebral Blood Flow Changes after Brain Injury in Human Amyloid-Beta Knock-in Mice

Author:

Abrahamson Eric E12,Foley Lesley M3,DeKosky Steven T4,Hitchens T Kevin3,Ho Chien3,Kochanek Patrick M56,Ikonomovic Milos D127

Affiliation:

1. Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

2. Geriatric Research Educational and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA

3. Pittsburgh NMR Center for Biomedical Research, Department of Biological Sciences, Carnegie Mellon University, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA

4. Office of the Dean and Department of Neurology, University of Virginia School of Medicine, Charlottesville, Virginia, USA

5. Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania USA

6. Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

7. Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Abstract

Traumatic brain injury (TBI) is an environmental risk factor for Alzheimer's disease (AD). Increased brain concentrations of amyloid-β (Aβ) peptides and impaired cerebral blood flow (CBF) are shared pathologic features of TBI and AD and promising therapeutic targets. We used arterial spin-labeling magnetic resonance imaging to examine if CBF changes after TBI are influenced by human Aβ and amenable to simvastatin therapy. CBF was measured 3 days and 3 weeks after controlled cortical impact (CCI) injury in transgenic human Aβ-expressing APPNLh/NLh mice compared to murine Aβ-expressing C57Bl/6J wild types. Compared to uninjured littermates, CBF was reduced in the cortex of the injured hemisphere in both Aβ transgenics and wild types; deficits were more pronounced in the transgenic group, which exhibited injury-induced increased concentrations of human Aβ. In the hemisphere contralateral to CCI, CBF levels were stable in Aβ transgenic mice but increased in wild-type mice, both relative to uninjured littermates. Post-injury treatment of Aβ transgenic mice with simvastatin lowered brain Aβ concentrations, attenuated deficits in CBF ipsilateral to injury, restored hyperemia contralateral to injury, and reduced brain tissue loss. Future studies examining long-term effects of simvastatin therapy on CBF and chronic neurodegenerative changes after TBI are warranted.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3