The Profile of Hippocampal Metabolites Differs between Alzheimer's Disease and Subcortical Ischemic Vascular Dementia, as Measured by Proton Magnetic Resonance Spectroscopy

Author:

Shiino Akihiko1,Watanabe Toshiyuki2,Shirakashi Yoshitomo3,Kotani Emi4,Yoshimura Masahiro3,Morikawa Shigehiro5,Inubushi Toshiro1,Akiguchi Ichiro2

Affiliation:

1. Biomedical MR Science Center, Shiga University of Medical Science, Ohtsu, Shiga, Japan

2. Center of Neurological and Cerebrovascular Diseases, Takeda Hospital, Shimogyo-ku, Kyoto, Japan

3. Department of Radiology, Shiga University of Medical Science, Ohtsu, Shiga, Japan

4. Department of Neurosurgery, Shiga University of Medical Science, Ohtsu, Shiga, Japan

5. Department of Fundamental Nursing, Shiga University of Medical Science, Ohtsu, Shiga, Japan

Abstract

Alzheimer's disease (AD) and subcortical ischemic vascular dementia (SIVD) have overlapping pathologies and risk factors, but their underlying neurodegenerative mechanisms are basically different. We performed magnetic resonance spectroscopy (MRS) to study metabolite differences between the two diseases in vivo. The subjects were 31 patients with SIVD and 99 with AD. Additionally, 45 elderly subjects were recruited as controls. We measured N-acetylaspartate (NAA), glutamine and glutamate (Glx), and myoinositol (mIns) concentration quantitatively using a 1.5-T MR scanner. N-acetylaspartate and Glx concentrations decreased in the hippocampus and cingulate/precuneal cortices (PCC) in both AD and SIVD patients, and the NAA decrease in the hippocampus was more prominent in AD than in SIVD. Interestingly, the pattern of mIns concentration changes differed between the two disorders; mIns was increased in AD but not increased in SIVD. If one differentiates between AD and SIVD by the mIns concentration in the hippocampus, the area under the receiver operating characteristic curve was 0.95, suggesting a high potential for discrimination. Our results suggest that proton MRS can provide useful information to differentiate between AD and SIVD. The difference of mIns concentrations in the hippocampus and PCC seems to reflect the different neurodegenerative mechanisms of the two disorders.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3