Involvement of the PTEN–AKT–FOXO3a Pathway in Neuronal Apoptosis in Developing Rat Brain after Hypoxia–Ischemia

Author:

Li Deyuan1,Qu Yi1,Mao Meng1,Zhang Xiaolan1,Li Jinhui1,Ferriero Donna2,Mu Dezhi12

Affiliation:

1. Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China

2. Department of Neurology, University of California, San Francisco, San Francisco, California, USA

Abstract

The proapoptotic function of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) phosphatase has been linked to its capacity to antagonize the phosphatidylinositol-3-kinase–Akt signaling pathway. Previous studies have shown that the Forkhead transcriptional factor (FOXO3a) is a critical effector of the PTEN-mediated tumor suppressor. However, whether the PTEN–Akt–FOXO3a pathway is involved in neuronal apoptosis in developing rat brain after hypoxia–ischemia (HI) is unclear. In this study, we generated an HI model using postnatal day 10 rats. Immunohistochemistry and western blot were used to detect the expression of total and phosphorylated PTEN, Akt, and FOXO3a, as well as its target gene Bim. We found that dephosphorylation of PTEN was accompanied by dephosphorylation of Akt and FOXO3a, which induced FOXO3a translocation into the nucleus and upregulated the expression of Bim. Furthermore, we found that PTEN inhibition by bisperoxovanadium significantly increased the phosphorylation of Akt and FOXO3a, decreased the nuclear translocation of FOXO3a, and inhibited Bim expression after HI. Moreover, the downregulation of Bim caused by PTEN inhibition attenuated cellular apoptosis in developing rat brain. Our findings suggest that the PTEN–Akt–FOXO3a pathway is involved in neuronal apoptosis in neonatal rat brain after HI. Agents targeting PTEN may offer a promise to rescue neurons from HI brain damage.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3