Abstract
AbstractDouble-sided microlens arrays (DSMLAs) include combinations of two single-sided MLAs to overcome positioning errors and greatly improve light transmissivity compared to other types of lenses. Precision glass molding (PGM) is used to fabricate DSMLAs, but controlling alignment errors during this process is challenging. In this paper, a mold assembly was manufactured with a novel combination of materials to improve the alignment accuracy of mold cores during PGM by using the nonlinear thermal expansion characteristics of the various materials to improve the DSMLA alignment accuracy. By establishing a mathematical model of the DSMLA alignment error and a thermal expansion model of the mold-sleeve pair, the relationship between the maximum alignment error of the DSMLA and the mold-sleeve gap was determined. This research provides a method to optimize the mold-sleeve gap and minimize the alignment error of the DSMLA. The measured DSMLA alignment error was 10.56 μm, which is similar to the predicted maximum alignment error. Optical measurements showed that the uniformity of the homogenized beam spot was 97.81%, and the effective homogeneous area accounted for 91.66% of the total area. This proposed method provides a novel strategy to improve the performance of DSMLAs.
Funder
Natural Science Foundation of Beijing Municipality
National Natural Science Foundation of China
Science and Technology Major Project of Jiangxi Province
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献