A manifold-based framework for studying the dynamics of the vaginal microbiome

Author:

Tsamir-Rimon Mor,Borenstein ElhananORCID

Abstract

AbstractThe vaginal microbiome plays a crucial role in our health. The composition of this community can be classified into five community state types (CSTs), four of which are primarily consisted of Lactobacillus species and considered healthy, while the fifth features non-Lactobacillus populations and signifies a disease state termed Bacterial vaginosis (BV), which is associated with various symptoms and increased susceptibility to diseases. Importantly, however, the exact mechanisms and dynamics underlying BV development are not yet fully understood, including specifically possible routes from a healthy to a BV state. To address this gap, this study set out to characterize the progression from healthy- to BV-associated compositions by analyzing 8026 vaginal samples and using a manifold-detection framework. This approach, inspired by single-cell analysis, aims to identify low-dimensional trajectories in the high-dimensional composition space. It further orders samples along these trajectories and assigns a score (pseudo-time) to each analyzed or new sample based on its proximity to the BV state. Our results reveal distinct routes of progression between healthy and BV states for each CST, with pseudo-time scores correlating with community diversity and quantifying the health state of each sample. Several BV indicators can also be successfully predicted based on pseudo-time scores, and key taxa involved in BV development can be identified using this approach. Taken together, these findings demonstrate how manifold detection can be used to successfully characterize the progression from healthy Lactobacillus-dominant populations to BV and to accurately quantify the health condition of new samples along the route of BV development.

Funder

Israel Science Foundation

U.S. Department of Health & Human Services | National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Microbiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3